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Abstract— An adaption feature of particle swarm 

optimization features have  better search efficiency than  

particle swarm optimization (PSO) is presented. It can 

perform a global search over the entire search space with 

faster convergence speed. APSO enables automatic control 

of weight, acceleration coefficients, and other parameters 

to improve efficiency and convergence speed. . Results 

show that APSO substantially enhances the performance of 

the PSO paradigm in terms of convergence speed, and 

solution accuracy, and algorithm reliability. 
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1. Introduction 

Particle swarm optimization (PSO) was introduced by 

Kennedy and Eberhart in 1995 [1], [2], [3]. ThePSO have a 

simple mechanism that mimics swarm behavior inbirds 

flocking and fish schooling to guide the particles to 

searchfor globally optimal solutions.  

Accelerating convergence speed and avoiding the local 

optimal have become the two most important and goals in 

PSO research.Adaptive PSO (APSO) is formulated by 

developing a systematic parameter adaptation scheme and 

an elitist learning strategy (ELS). To enable adaptation, an 

evolutionary state estimation (ESE) technique is first 

devised. Adaptive parameter control strategies can be 

developed based on the identified evolutionary state and by 

making use of existing research results on inertia weight 

[13][14] and acceleration coefficients. 

 

2. PSO and its Developments 

 
PSO Framework: In PSO, a swarm of particles are 

represented as potential solutions, and each particleI is 

associated with two vectors,i.e., the velocity vector 

Vi=[v1iv2i,...,vDi]and the position vector Xi= 

[x1i,x2i,...,xDi], whereD stands for thedimensions of the 

solution space. The velocity and the positionof each 

particle are initialized by random vectors within 

thecorresponding ranges. During the evolutionary process, 

thevelocity and position of particle I on  dimension d are 

updated as, 

 

  Where ω is the inertia weight [13],c1 and c2  are the 

acceleration coefficients [2], andRand d1 and Rand d2 are 

two uniformly distributed random numbers independently 

generated within [0, 1] for the dth dimension [1]. In 

(1),pBestiis the position with the best fitness found so far 

for theith particle, and nBest is the best position in the 

neighborhood. In the literature, instead of using 

nBest,gBest may be used in the global-version PSO, 

whereaslBest may be used in the local-version PSO 

(LPSO). 

 

3. ESE for PSO 

 

 
Fig.1: Population distribution observed at various stages in a  

PSO process. (a) Generation=1, (b) Generation=25 
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ESE: Based on the search behaviors and the population 

distribution characteristics of the PSO, an ESE approach is 

developed inthis section. 

The  sparsely distribution information in Fig. 1 can be 

formulated as illustrated in Fig. 2 by calculating the mean 

distance of each particle to all the other particles. It is 

reasonable to expect that the mean instance from the 

globally best particle to other particles would be minimal in 

the convergence state since the global best tends to be 

surrounded by the swarm. Incontrast, this mean distance 

would be maximal in the jumping out state, because the 

global best is likely to be away fromthe crowding swarm. 

Therefore, the ESE approach will take into account the 

population distribution information in every generation, as 

detailed given in the following steps. 

Step 1: At the current position, calculate the mean 

distanceof each particle i to all the other particles. 

 
Fig.2: PSO population distribution information quantified by an 

evolutionary factor 

 

For example, this mean distance can be measured using an 

Euclidian metric. 

                                   (3) 
Where N and Dare the population size and thenumber of 

dimensions, respectively. 

Step 2: Denotedof the globally best particle asdg .Compare 

alld I ’s, and determine the maximum andminimum 

distancesdmaxanddmin. Compute an―evolutionary 

factor‖fas defined by 

                             (4) 
 Take the time-varyingf1minimization processshown in Fig. 

1 as an example to illustrate the variations off.  

Step 3: Classifyfinto one of the four setsS1,S2,S3, andS4, 

which represent the states of exploration, exploitation, 

convergence, and jumping out, respectively. 

 

4. APSO 
 

4.1 Adaptation of the Inertia Weight 

 

  The inertia weightωinPSO is used to balance the global 

and local search capabilities.Many researchers have 

advocated that the value ofωshouldbe large in the 

exploration state and small in the exploitationstate [4], [13], 

[14]. However, it is not necessarily  toDecreaseωpurely 

with time [14]. The evolutionary factorfshares some 

characteristics with the inertia weightω in thatfis also 

relatively large during the exploration state and 

becomesrelatively small in the convergence state.In this 

paper,ωis initialized to 0.9. Asωis not 

necessarilymonotonic with time, but monotonic withf,ωwill, 

thus, adaptto the search environment characterized byf. 

  In a jumping-outor exploration state[12], the 

largefandωwill benefit the globalsearch, as referenced 

earlier. Conversely, whenfis small, anexploitation or 

convergence state is detected, and, hence,ωdecreases to 

benefit the local search. 
 

4.2 Control of the Acceleration Coefficients 
 

  Adaptive control can be devised for the acceleration 

coefficients based onthefollowing notion. 

Parameterc1represents the ―self-cognition‖that pulls the 

particle to its own historical best position, helpingexplor 

and maintaining the diversity of the swarm. Parameterc2 

represents the ―social influence‖ that pushes theswarm to 

converge to the current best regionglobally, helpingwith 

fast convergence [4], [12]. These are two 

differentmechanisms should be given different treatments 

in different evolutionary states [10]. In this work, the 

accelerationcoefficients areinitialized to 2.0 and adaptively 

controlledaccording to the evolutionary state, with 

strategies developed asfollows. 

  Strategy 1-Increasingc1and Decreasingc2 in an 

Exploration State: It is important to explore as many 

optima aspossible in the exploration state. Hence, 

increasingc1 and decreasingc2can help particles explore 

individually and achievetheir own historical best positions, 

rather than crowd around thecurrent best particle that is 

likely to be associated with a local 

optimum. 

  Strategy 2-Increasingc1slightly and Decreasing 

c2Slightly in an Exploitation State: In this state, the 

particles are makinguse of local information and grouping 

toward possible localoptimal niches indicated by the 

historical best position ofeach particle. Hence, 

increasingc1slowly and maintaining arelatively large value 

can emphasize the search and exploitationaroundpBesti[9]. 

In the meantime, the globally best particle doesnot always 

locate the global optimal region at this stage yet.Therefore, 

decreasingc2slowly and maintaining a small valuecan 

avoid the deception of a local optimum. Further, an 

exploitation state is more likely to occur after an 

exploration stateand before a convergence state. Hence, 

changing directions forc1andc2should slightly be altered 

from the exploration stateto the convergence state. 

  Strategy 3-Increasingc1Slightly and 

Increasingc2Slightlyin a Convergence State: In the 
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convergence state, the swarmseems to find the globally 

optimal region, and, hence, theinfluence ofc2should be 

emphasized to lead other particlesto the probable globally 

optimal region. Thus, the value ofc2should be increased. 

On the other hand, the value ofc1shouldbe decreased to let 

the swarm converge fast. However, extensiveexperiments 

on optimizing the 12 benchmark functions given in Table I 

revealed that such a strategy would prematurelysaturate the 

two parameters to their lower and upper 

bounds,respectively. The consequence is that the swarm 

will stronglybe attracted by the current best region, causing 

premature convergence, which is harmful if the current best 

region is a localoptimum. To avoid this, bothc1andc2are 

slightly increased.Note that, slightly increasing both 

acceleration parameterswill eventually have the same 

desired effect as reducingc1andincreasingc2, because their 

values will be drawn to around 2.0due to an upper bound of 

4.0 for the sum ofc1andc2.  

  Strategy 4-Decreasingc1and Increasing c2in a Jumping-

Out State: When the globally best particle is jumping out 

oflocal optimum toward a better optimum, it is likely to be 

faraway from the crowding cluster. As soon as this new 

region isfound by a particle, which becomes the (possibly 

new) leader,others should follow it and fly to this new 

region as fast aspossible. A largec2together with a 

relatively smallc1helpsto obtain this goal. Variations of the 

acceleration coefficients with the evolutionary state are 

illustrated in Fig. 3 

 
Fig. 3: ELS 

 

  The failures of using parameter adaptation alone for 

GPSOand VPSO on Schwefel’s function suggest that a 

jumping-outmechanism would be necessary for enhancing 

the globality ofthese search algorithms. Hence, an ―ELS‖ is 

designed here andapplied to the globally best particle so as 

to help jump out oflocal optimal regions when the search is 

identified to be in aconvergence state[5].Unlike the other 

particles, the global leader has no exemplarsto follow. It 

needs fresh momentum to improve itself. Hence, 

aperturbation-based ELS is developed to helpgBestpush 

itselfout to a potentially better region. If another better 

region isfound, then the rest of the swarm will follow the 

leader to jumpout and converge to the new region.The ELS 

randomly chooses one dimension ofgBest’s historical best 

position, which is denoted byPdfor thedth dimension. Only 

one dimension is chosen because the local optimumis likely 

to have some good structure of the global optimum,and, 

hence, this should be protected. As every dimension hasthe 

same probability to be chosen, the ELS operation canbe 

regarded to perform on every dimension in a 

statisticalsense. Similar to simulated annealing, the 

mutation operationin evolutionary programming or in 

evolution strategies, elitistlearning is performed through a 

Gaussian perturbation. 

(5) 

  

Fig.4: Search Behaviors of APSO 

 

The search range[Xdmin,Xdmax]is the same as the lower 

and upper bounds of theproblem. TheGaussian(μ, σ2) is a 

random number of a Gaussian distribution with a zero 

meanμand a standard deviation (SD)σ, which is termed as 

the ―Elitistlearning rate.‖ Similar to some time-varying 

neural networktraining schemes, it is suggested thatσbe 

decreasedwith the generation number, which is given by[8] 
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                       (6) 

Where σmax and σmin are the upper and lower bounds 

ofσ,which represents the learning scale to reach a new 

region. Empirical study shows thatσmax=1.0andσmin=0.1 

result in good performance on most of the test functions 

(referto Section VI-C for an in-depth discussion). 

Alternatively,σmay geometrically be decreased, similar to 

the temperature-decreasing scheme in Boltzmann learning 

seen in simulatedannealing. The ELS process is illustrated 

in Fig.4. 

  The complete flowchart of the APSO algorithm with 

adaptive parameters and ELS is shown in Fig.5. 

 
Fig.5: Adaptive parameters and ELS 

 

  Before applying theAPSO to comprehensive tests on 

benchmark functions, we firstinvestigate its search 

behaviors in unimodal and multimodal search spaces. 

  APSO in Unimodal Search Space: The search 

behaviorof the APSO in a unimodal space has been 

investigated onthe Sphere function (f1)[6]. In a unimodal 

space, it isimportant for an optimization or search 

algorithm to convergefast and to reine the solution for high 

accuracy. The inertiaweight confirms that the APSO 

maintainsa large ω in the exploration phase (for about 50 

generations),and then a rapidly decreasing ω follows 

exploitation, leading toconvergence, as the unique global 

optimum region is found bya leading particle, and the 

swarm follows it. The ESE in APSO has influenced 

theacceleration coefficients. The curves for c1 and c2 

somewhatshow good agreement with the ones given in Fig. 

5. It can beseen that c1 increases while c2 decreases in the 

exploration andexploitation phases. Then, c1 and c2 

reverse their directionswhen the swarm converges, 

eventually returning to around2.0. Then, trials in elitist 

learning perturb the particle thatleads the swarm, which is 

reflected in the slight divergencebetween c1 and c2 that 

follows. The search behavior on theunimodal function 

indicates that the proposed APSO algorithmhas indeed 

identified the evolutionary states and can adaptivelycontrol 

the parameters for improved performance. 

  APSO in Multimodal Search Space: Here, the APSO 

istested again to see how it will adapt itself to a multimodal 

space.When solving multimodal functions, a search 

algorithm shouldmaintain diversity of the population and 

search for as manyoptimal regions as possible. The search 

behavior of the APSO isinvestigated on Rastrigin’s 

function (f8 )[4],[7]. To comparethe diversity  by the APSO 

and the traditional PSO,a yardstick proposed in [11] is used 

here, called the ―populationstandard deviation,‖ (psd) 

                         (7) 
  Where N, D, and x are the population size, the number 

of dimension,and the mean position of all the particles, 

respectively. 

  The variations in psdcan indicate the diversity level of 

theswarm. If psdis small, then it indicates that the 

populationhasclosely converged to a particular region, and 

the diversityof thepopulation is low. A larger value of 

psdindicates thatthe population is of higher diversity. 

However,it does not mean that a larger psdis always better 

than asmaller one because an algorithm that cannot 

converge mayalso present a large psd. Hence, the psdneeds 

to be consideredtogether with the solution that the 

algorithm arrives at.The results of psdcomparisons are 

plotted  andthose of the evolutionary processes . It can 

beseen that the APSO has an ability  out from the 

localoptima, which is reflected by the regained diversity of 

thepopulation, as revealed in with a steady improvementin 

the solution, the inertia weight and the acceleration  

coefficientbehaviors of the APSO, respectively. These plots 

confirm that,in a multimodal space, the APSO can also find 

a potentialoptimal region (maybe a local optimum) fast in 

an early phaseand converge fast with a rapid decreasing 

diversity due to theadaptive parameter strategies. However, 

if the current optimalregion is local, then the swarm can 

separate and jump out.Hence, the APSO can appropriately 

increase the diversity of the population so as to explore for 

a better region owing tothe ELS in the convergence state. 

This behavior with adaptivepopulation diversity is valuable 

for a global search algorithm is used toprevent from being 

trapped in the local optima and to find the global optimum 

in a multimodal space. 
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5. Analysis of Parameter Adaptationand          

         Elitist Learning 

 
5.1 Merits of Parameter Adaptation and Elitist Learning 

 

  To quantify the significance of these two operations, the 

performance of APSO without parameter adaptation or 

elitistlearning is tested under the same running conditions . 

Results of the mean values on 30 independent trials are 

presented in[2],[10]. It is clear from the results that with 

elitist learning aloneand without adaptive control of 

parameters, the APSO can stilldeliver good solutions to 

multimodal functions. However, theAPSO suffers from 

lower accuracy in solutions to unimodalfunctions. As 

algorithms can easily locate the global optimalregion of a 

unimodal function and then refine the solution,the lower 

accuracy may be caused by the slower convergencespeed to 

reach the global optimal region. On the other hand,the 

APSO with parameter adaptation alone but without ELScan 

hardly jump out of the local optima and, hence, resultsin 

poor performance on multimodal functions. However, it 

canstill solve unimodal problems well.Note that both of the 

reduced APSO algorithms generallyoutperform a standard 

PSO that involves neither adaptationparameters nor elitist 

learning. However, the full APSO is themost powerful and 

robust for any tested problem. This is mostevident in the 

test results on f4. These results together with theresults  

confirm the hypothesis that parameteradaptation speeds up 

the convergence of the algorithm andelitist learning helps 

the swarm jump out of the local optimaand find better 

solutions. 

 

5.2  Sensitivity of the Acceleration Rate 

 

  The effect of the acceleration rate, which is reflected 

byits bound δ, on the performance of the APSO is 

investigatedhere. For this, the learning rate σ is, hence, 

fixed (e.g., σmax =σmin = 0.5), and the other parameters of 

the APSO remain thesame as in Section V-A. The 

investigation consists of six teststrategies for δ, the first 

three being to fix its value to 0.01, 0.05,and 0.1, 

respectively, and the remaining three being randomlyto 

generate its value using a uniform distribution within 

[0.01,0.05], [0.05, 0.1], and [0.01, 0.1], respectively. The 

resultsare presented in Table X in terms of the mean values 

of thesolutions found in 30 independent trials.It can be seen 

that APSO is not very sensitive to the accelerationrate δ, 

and the six acceleration rates all offer goodperformance. 

This may be owing to the use of bounds for theacceleration 

coefficients and the saturation to restrict their sumby (12). 

Therefore, given the bounded values of c1 and c2 andtheir 

sum restricted by (12), an arbitrary value within the 

range[0.05, 0.1] for δ should be acceptable to the APSO 

algorithm. 

 

6. Conclusion 

 
In this paper, PSO has been extended to APSO. This 

progressin PSO has been made possible by ESE, which 

utilizes thepopulation distribution information and fitness 

of relative particle ,sharing a similar spirit to the internal 

modelling in evolutionstrategies. ESE-based parameter 

adaptation technique departs fromthe existing parameter 

variation schemes ,based on the generation number alone. 

Hence, the APSO is still simple and almost as easy to use 

asthe standard PSO, whereas it brings in substantially 

improvedperformance in terms of convergence speed, 

global optimality,solution accuracy, and algorithm 

reliability. 
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